Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Journal Article

Potentials of Crankshaft Fillet Rolling Process

2012-04-16
2012-01-0755
Crankshaft is a dynamic component that copes with elevated alternating stresses. In order to ensure the service reliability, fillet rolling process is being applied. The state of the art empirical assumptions to consider the effect of fillet rolling process on crankshaft fatigue are conservative. This leads to an over-engineering of the crankshaft. However, calculation of the compressive residual stresses due to surface treatment is a demanding task. The quality of the durability analysis can only be increased by an accurate consideration of the fillet rolling effect. Therefore, Hegenscheidt-MFD, FEV Motorentechnik and Institute for Combustion Engines (VKA) cooperated to enlighten the phenomenon of the fillet rolling process. Process calculations are applied and validated by the measurements and tests. The calculated residual stresses are then superposed with the dynamic loads calculated by FEV Virtual Engine.
Technical Paper

Parametric Analysis of Piston Bowl Geometry and Injection Nozzle Configuration using 3D CFD and DoE

2012-04-16
2012-01-0700
In meeting the stringent emission norms with internal engine measures, the design of the piston bowl and the nozzle configuration perform a defining role. Through 3D CFD simulations, this article shall parametrically investigate the influence of piston bowl geometry and nozzle characteristics on the performance of the combustion system. After validation of the 3D simulation model with experimental results, a Design of Experiment (DoE) method shall be applied to analyze a matrix of piston bowls with parametric variations in geometry. Further, the influence of the nozzle cone angle, hydraulic flow rate, number of holes and their combination shall be determined using systematic parameter variations with selected piston bowl designs. The performance of the various hardware configurations would be evaluated based on the exhaust emissions and fuel consumption values.
Journal Article

Thermal Shock Protection for Diesel Particulate Filters

2011-12-15
2011-01-2429
During a thermal regeneration of a Diesel particulate filter (DPF) the temperature inside the DPF may raise above critical thresholds in an uncontrolled way (thermal shock). Especially driving conditions with a comparable low exhaust gas mass flow and high oxygen content like idle speed may create a thermal shock. This paper presents a concept for an ECU software structure to prevent the DPF from reaching improper temperatures and the methodology in order to calibrate this ECU structure. The concept deals in general with a closed-loop control of the exhaust gas air-fuel-ratio during the critical engine operation phases. Those critical operation phases are identified at the engine test bench during “Drop-to-Idle” and “Drop-to-Overrun” experiments. The experiments show that those phases are critical having on the one hand a low exhaust gas mass flow and on the other hand a high oxygen percentage in the exhaust gas.
Technical Paper

Gasoline HCCI/CAI on a Four-Cylinder Test Bench and Vehicle Engine - Results and Conclusions for the Next Investigation Steps

2010-05-05
2010-01-1488
Internal combustion engines with lean homogeneous charge and auto-ignition combustion of gasoline fuels have the capability to significantly reduce fuel consumption and realize ultra-low engine-out NOx emissions. Group research of Volkswagen AG has therefore defined the Gasoline Compression Ignition combustion (GCI®) concept. A detailed investigation of this novel combustion process has been carried out on test bench engines and test vehicles by group research of Volkswagen AG and IAV GmbH Gifhorn. Experimental results confirm the theoretically expected potential for improved efficiency and emissions behavior. Volkswagen AG and IAV GmbH will utilize a highly flexible externally supercharged variable valve train (VVT) engine for future investigations to extend the understanding of gas exchange and EGR strategy as well as the boost demands of gasoline auto-ignition combustion processes.
Technical Paper

Springback Elimination in Structural Components by Means of Electromagnetic Forming

2009-04-20
2009-01-0803
Looking for car weight reduction related to the use of High Strength Steels (HSS) for manufacturing body-in-white components, an innovative application of the high velocity forming techniques has been developed: the Electro Magnetic (EM) calibration and elimination of the spring-back effect (sidewall curl) of High Strength Steel U-channels. Within this paper the initial tests on L and U-shaped parts will be presented. Being the mechanical stiffness the main parameter for improving the coil endurance, the prediction of the coil strains under EM forces is a basic issue, which has been addressed within this study.
Technical Paper

Comparison of Different EGR Solutions

2008-04-14
2008-01-0206
This paper compares 4 different EGR systems by means of simulation in GT-Power. The demands of optimum massive EGR and fresh air rates were based on experimental results. The experimental data were used to calibrate the model and ROHR, in particular. The main aim was to investigate the influence of pumping work on engine and vehicle fuel consumption (thus CO2 production) in different EGR layouts using optimum VG turbine control. These EGR systems differ in the source of pressure drop between the exhaust and intake pipes. Firstly, the engine settings were optimized under steady operation - BSFC was minimized while taking into account both the required EGR rate and fresh air mass flow. Secondly, transient simulations (NEDC cycle) were carried out - a full engine model was used to obtain detailed information on important parameters. The study shows the necessity to use natural pressure differences or renewable pressure losses if reasonable fuel consumption is to be achieved.
Technical Paper

Locally Resolved Measurement of Gas-Phase Temperature and EGR-Ratio in an HCCI-Engine and Their Influence on Combustion Timing

2007-04-16
2007-01-0182
Laser-based measurements of charge temperature and exhaust gas recirculation (EGR) ratio in an homogeneous charge compression ignition (HCCI) engine are demonstrated. For this purpose, the rotational coherent anti-Stokes Raman spectroscopy technique (CARS) was used. This technique allows temporally and locally resolved measurements in combustion environments through only two small line-of-sight optical accesses and the use of standard gasoline as a fuel. The investigated engine is a production-line four-cylinder direct-injection gasoline engine with the valve strategy modified to realize HCCI-operation. CARS-measurements were performed in motored and fired operation and the results are compared to polytropic calculations. Studies of engine speed, load, valve timing, and injection pressure were conducted showing the strong influence of charge temperature on the combustion timing.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

2006-10-16
2006-01-3401
Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

Effect of HPDC Parameters on the Performance of Creep Resistant Alloys MRI153M and MRI230D

2005-04-11
2005-01-0334
The growing demand for the use of magnesium alloys in the production of automotive powertrain components led to the development of creep resistant diecasting alloys MRI153M and MRI230D. The present paper addresses the main high-pressure die casting parameters, which significantly affect the performance of components, produced of these new alloys. A systematic study was carried out in order to correlate die-casting parameters to the performance of new alloys. The results obtained clearly indicated that optimization of molten metal and die temperatures, injection profile parameters and lubrication mixtures allowed to improve the die castability and service properties of the new alloys and produce high performance components with intricate geometry. This was manifested by production of several practical demonstrators such as gearboxes, oil pans, oil pumps and crankcases.
Technical Paper

NO Laser-Induced Fluorescence Imaging in the Combustion Chamber of a Spray-Guided Direct-Injection Gasoline Engine

2004-06-08
2004-01-1918
In direct-injection gasoline (GDI) engines with charge stratification, minimizing engine-out nitrogen oxide (NOx) emission is crucial since exhaust-gas aftertreatment tolerates only limited amounts of NOx. Reduced NOx production directly lowers the frequency of energy-inefficient catalyst regeneration cycles. In this paper we investigate NO formation in a realistic GDI engine. Quantitative in-cylinder measurements of NO concentrations are carried out via laser-induced fluorescence imaging with excitation of NO (A-X(0,2) band at 248 nm), and subsequent fluorescence detection at 220-240 nm. Engine modifications were kept to a minimum in order to provide results that are representative of practical operating conditions. Optical access via a sapphire ring enabled identical engine geometry as a production line engine. The engine is operated with commercial gasoline (“Super-Plus”, RON 98).
Technical Paper

Advanced Emission Control Technologies for PM Reduction in Heavy-Duty Applications

2003-05-19
2003-01-1862
1 In this paper results obtained with different particulate matter (PM) reduction technologies are presented. Diesel oxidation catalysts (DOC) are well known as a reliable PM reduction technology which can efficiently remove the soluble organic fraction (SOF) but which has no effect on the solid particles in PM. A drawback is that in combination with high sulfur fuel, oxidation of SO2 to SO3 by the DOC can occur, resulting in an increase of PM emissions. An alternative technology that is proven to significantly reduce soot emissions comprises diesel particulate wall-flow filters. High filtration efficiencies of up to 90% and beyond are feasible. The main obstacle is the combustion of the trapped soot. As shown in this paper, the application of a catalyst coating to the filter aids the filter regeneration by lowering the balance-point temperature. The main disadvantages of wall-flow filters are an increase in back-pressure and possible plugging caused by oil-ash accumulations.
Technical Paper

Optical Coordinate Measuring Techniques for the Determination and Visualization of 3D Displacements in Crash Investigations

2003-03-03
2003-01-0891
The measurement of 3D coordinates using optical techniques is well known for more than 50 years. Today, modern photogrammetric systems are based on handheld digital cameras and are used to identify the location of any circular marker or feature on the object's surface. The ease of use and the accurate and automated derivation of 3D coordinates from 2D digital images helped to establish a powerful tool for position control, assembly checks and reverse engineering. A new application is the analysis of real vehicle crashes. The location of hundreds of markers on the damaged vehicle can easily be determined in vehicle body position. These coordinates are being compared to the undeformed geometry and provide herby 3D information on any displacement. Using reverse engineering techniques, surfaces are created from the 3D points and thus a 3D model of the crashed vehicle is available for an easy visualization of the deformation.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

Exhaust Gas Aftertreatment of Volkswagen FSI Fuel Stratified Injection Engines

2002-03-04
2002-01-0346
For substantial reduction of fuel consumption of their vehicle fleet, Volkswagen AG has decided to develop spark-ignition engines with direct fuel injection. To launch this new engine concept with stratified lean operation mode while at the same time meeting the stringent EU IV emission standards, it was necessary to develop a suitable exhaust gas aftertreatment system. This was achieved as part of an intensive co-operation between Volkswagen AG and OMG, formerly dmc2 Degussa Metals Catalysts Cerdec AG. The paper describes the demands for exhaust gas aftertreatment due to lean burn operation. In addition the main development steps of the exhaust gas aftertreatment system for Volkswagen FSI engines and catalyst durability over vehicle lifetime are discussed. Focus is laid on the catalyst system design and coating variations. Volkswagen developed a new closed-loop emission control management system which uses NOx-sensor signals for the first time worldwide.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
Technical Paper

The Magnesium Hatchback of the 3-Liter Car: Processing and Corrosion Protection

2000-03-06
2000-01-1123
The hatchback of Volkswagen's 3 liter car (3 l fuel consumption per 100 km) consists of an inner component of die casting magnesium (AM50) covered with an aluminum panel from the outside. This hybrid design requires a new manufacturing process: The pre-coated magnesium part will be bonded and folded with the bare aluminum part. Corrosion protection is provided by an organic coating system which both protects against general corrosion and galvanic corrosion. The corrosion of the Al / Mg sandwich has been examined with hybrid samples which are similar to the hatchback. Several powder coatings (epoxy resin, polyester resin, hybrid resin), wet paints and cathodic electro-coating paints of different thicknesses and compositions have been applied to the magnesium part. They show that only powder coating provides adequate protection. Galvanic corrosion at the points of attachment of the hatchback might be possible (for example the bolted joint of the hinge).
Technical Paper

Improved SCR Systems for Heavy Duty Applications

2000-03-06
2000-01-0189
This paper describes the function and application of the preoxidation, hydrolysis and SCR catalysts individually and as a combined system for urea SCR both in model gas and engine bench tests. Using the basic system and a non-optimized urea injection strategy 45% NOx conversion was achieved in the ESC engine test. Adding a preoxidation catalyst significantly improved the NOx conversion in the low temperature region of the engine mapping. NOx conversions over 75% can be achieved in the ESC test using this improved system. With a 50% reduced SCR catalyst volume still a NOx conversion of over 65% could be achieved. Tests after 200 hours engine aging show that the activity of the system is stable.
Technical Paper

Durability Aspects of NOx Storage Catalysts for Direct Injection Gasoline Vehicles

1999-03-01
1999-01-1285
The introduction of gasoline direct injection technology into the European market will depend mainly on the availability of an effective and durable aftertreatment system, in order to reach future stringent European emission standards. NOx storage technology provides a reasonable chance of fulfilling future emission goals, but durability problems such as thermal degradation and sulfur poisoning have yet to be overcome. The present paper is dedicated to these problems, and demonstrates the progress achieved so far. The influence of different aging modes and aging severity on the NOx conversion efficiency of an advanced generation of NOx storage catalysts, is described in detail. It was found that the severity of aging at comparable catalyst bed temperatures, increases in the following order: hydrothermal aging in N2/H2O < engine aging w/o fuel cut at λ-1 < furnace aging in air < engine aging with fuel cut at λ-1.
X